

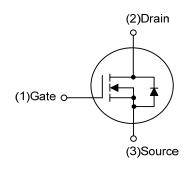
UNISONIC TECHNOLOGIES CO., LTD

UT120N10H

Preliminary

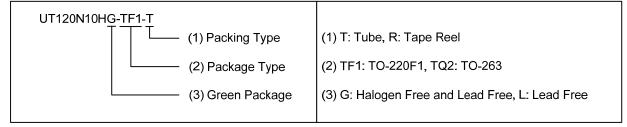
Power MOSFET

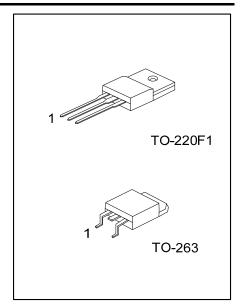
120A, 100V N-CHANNEL POWER MOSFET


■ DESCRIPTION

The UTC **UT120N10H** is a N-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

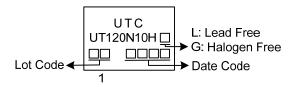
- * $R_{DS(ON)} \le 8.5 \text{ m}\Omega$ @ $V_{GS}=10V$, $I_D=60A$
- * Improved dv/dt capability
- * High Switching Speed
- * Fast switching


■ SYMBOL



ORDERING INFORMATION

Ordering Number		Doolsono	Pin Assignment			Daakina	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UT120N10HL-TF1-T	UT120N10HG-TF1-T	TO-220F1	G	D	S	Tube	
UT120N10HL-TQ2-T	UT120N10HG-TQ2-T	TO-263	G	D	S	Tube	
UT120N10HL-TQ2-R	UT120N10HG-TQ2-R	TO-263	G	D	S	Tape Reel	


Note: Pin Assignment: G: Gate D: Drain S: Source

www.unisonic.com.tw 1 of 6

■ MARKING

■ ABSOLUTE MAXIMUM RATINGS (T_C=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V _{DSS}	100	V
Gate-Source Voltage		V _{GSS}	±20	V
Drain Current	Continuous	I _D	120	Α
	Pulsed	I _{DM}	240	Α
Avalanche Energy	Single Pulsed	E _{AS}	194	mJ
Peak Diode Recovery dv/dt (Note 4)		dv/dt	9.3	V/ns
Power Dissipation	TO-263		215	W
	TO-220F1	P _D	49	W
Junction Temperature		TJ	+150	°C
Storage Temperature Range		T _{STG}	-55 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 3. L = 0.1mH, I_{AS} = 62.2A, V_{DD} = 50V, R_{G} = 25 Ω , Starting T_{J} = 25 $^{\circ}$ C
- 4. $I_{SD} \le 30A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

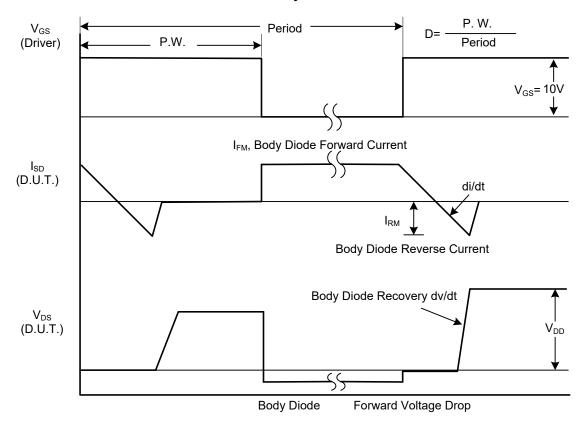
■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT
Junction to Ambient		θ_{JA}	62.5	°C/W
Junction to Case	TO-263	0	0.58	°C/W
	TO-220F1	θις	2.55	°C/W

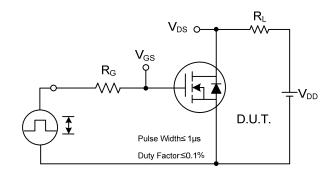
■ ELECTRICAL CHARACTER ISTICS (T_J=25°C, unless otherwise specified)

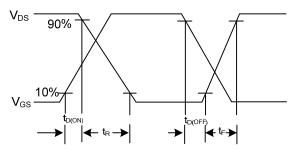
PARAMETER		SYMBOL	TEST CONDITIONS MIN		TYP	MAX	UNIT	
OFF CHARACTERISTICS								
Drain-Source Breakdown Voltage		BV _{DSS}	I _D =250μA, V _{GS} =0V	100			V	
Drain-Source Leakage Current		I_{DSS}	V _{DS} =100V,V _{GS} =0V			1	μΑ	
Gate-Source Leakage Current	Forward	- I _{GSS}	V _{GS} =+20V, V _{DS} =0V			+100	nA	
	Reverse		V _{GS} =-20V, V _{DS} =0V			-100	nA	
ON CHARACTERISTICS								
Gate Threshold Voltage		$V_{GS(TH)}$	$I_D=250\mu A,\ V_{DS}=V_{GS}$	2.0		4.0	V	
Static Drain-Source On-State Resistance		R _{DS(ON)}	V _{GS} =10V, I _D =60A			8.5	mΩ	
DYNAMIC PARAMETERS								
nput Capacitance		C _{ISS}			1.4		nF	
Output Capacitance		Coss	V _{DS} =25V, V _{GS} =0V, f=1MHz		724		pF	
Reverse Transfer Capacitance		C _{RSS}			441		pF	
SWITCHING PARAMETERS								
Total Gate Charge		Q_G	\\ -80\\ \\ -10\\ -120A		240		nC	
Gate to Source Charge		Q_{GS}	V _{DD} =80V, V _{GS} =10V, I _D =120A, (Note 1, 2)		57		nC	
Gate to Drain Charge		Q_GD	(Note 1, 2)		20		nC	
Turn-ON Delay Time		$t_{D(ON)}$			41		ns	
Rise Time		t_R	V _{DD} =40V, V _{GS} =10V I _D =120A,		30		ns	
Turn-OFF Delay Time		$t_{D(OFF)}$	R _G =3Ω (Note 1, 2)		90		ns	
Fall-Time		t_{F}			47		ns	
SOURCE- DRAIN DIODE RATII	NGS AND C	CHARACTER	ISTICS			_		
Maximum Body-Diode Continuous Current		Is				120	Α	
Drain-Source Diode Forward Voltage		V_{SD}	I _S =120A			1.4	V	
Reverse Recovery Time		t _{rr}	I _S =30A, V _{GS} =0V		138		nS	
Reverse Recovery Charge (Note 1)		Q_{rr}	dI _F /dt=100A/μs		223		nC	

Notes: 1. Pulse Test: Pulse width \leq 300 μ s, Duty cycle \leq 2%.

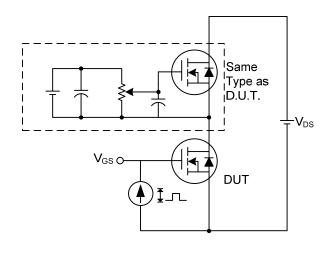

2. Essentially independent of operating ambient temperature.

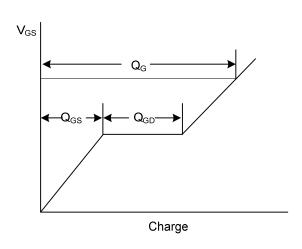
■ TEST CIRCUITS AND WAVEFORMS



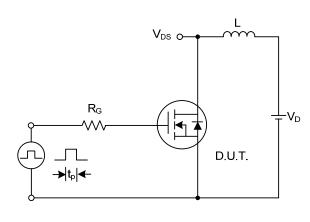

Peak Diode Recovery dv/dt Test Circuit

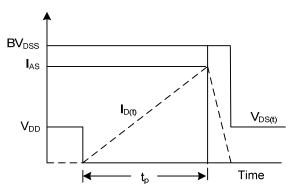
Peak Diode Recovery dv/dt Waveforms


■ TEST CIRCUITS AND WAVEFORMS



Switching Test Circuit


Switching Waveforms



Gate Charge Test Circuit

Gate Charge Waveform

Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

