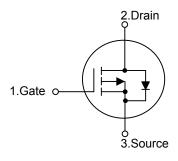


UNISONIC TECHNOLOGIES CO., LTD

UF9540 Preliminary Power MOSFET

-100V, -23A P-CHANNEL POWER MOSFET

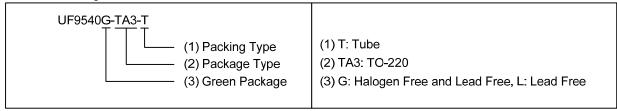
■ DESCRIPTION

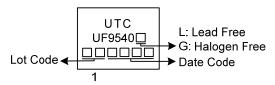

The UTC **UF9540** is an P-channel power MOSFET using UTC's utilize advanced processing techniques to achieve extremely low on-resistance per silicon area.

This benefit, combined with the fast switching speed and ruggedized device design Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

■ FEATURES

- * Advanced Process Technology
- * Dynamic dv/dt Rating
- * Fast Switching
- * Fully Avalanche Rated


■ SYMBOL


ORDERING INFORMATION

Ordering Number		Dardina	Pin Assignment			Daalina	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UF9540L-TA3-R	UF9540G-TA3-T	TO-220	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source

MARKING

TO-220

<u>www.unisonic.com.tw</u> 1 of 4

■ ABSOLUTE MAXIMUM RATINGS (T_C=25°C, unless otherwise specified)

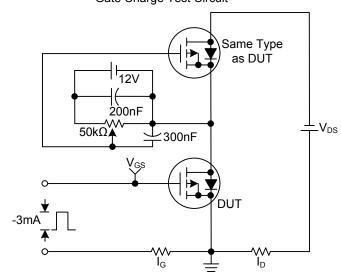
PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		$V_{ extsf{DSS}}$	-100	V
Gate to Source Voltage		V_{GSS}	±20	V
Drain Current	Continuous	I _D	-23	Α
	Pulsed (Note 2)	I_{DM}	-64	Α
Avalanche Energy	Single Pulsed (Note 3)	E _{AS}	62	mJ
Peak Diode Recovery dv/dt (Note 4)		dv/dt	3.7	V/ns
Power Dissipation		P_D	65	W
Junction Temperature		TJ	+150	°C
Storage Temperature		T_{STG}	-55 ~ +150	°C

- Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
 - 2. Repetitive Rating: Pulse width limited by maximum junction temperature.
 - 3. L = 0.1mH, I_{AS} = -35.4A, V_{DD} = -50V, R_G = 25 Ω , Starting T_J =25 $^{\circ}C$
 - 4. $I_{SD} \le$ -23A, di/dt \le 200A/ μ s, $V_{DD} \le$ BV $_{DSS}$, Starting T_J =25°C

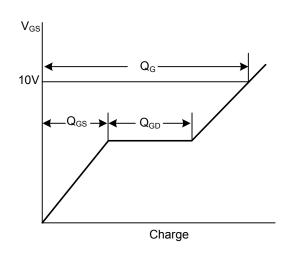
■ THERMAL DATA

PARAMETER	SYMBOL	PATINGS	UNIT	
Junction-to-Ambient	θ_{JA}	62.5	°C/W	
Junction-to-Case	θ_{JC}	1.92	°C/W	

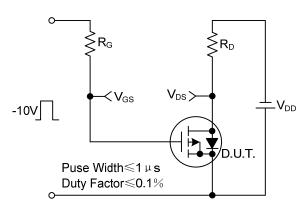
■ ELECTRICAL CHARACTERISTICS (T_J=25°C, unless otherwise specified)

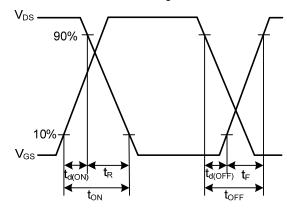

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage		$V_{(BR)DSS}$	V _{GS} =0V, I _D =-250μA	-100			V
Drain-Source Leakage Current		I _{DSS}	V _{DS} =-100V, V _{GS} =0V			-100	μA
Gate-Source Leakage Current	Forward		V _{GS} =+20V			+100	nA
	Reverse	I _{GSS}	V _{GS} =-20V			-100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=-250\mu A$	-2.0		-4.0	V
Drain-Source On-State Resistance		R _{DS(ON)}	V _{GS} =-10V, I _D =-6.6A			110	mΩ
DYNAMIC PARAMETERS							
Input Capacitance	nput Capacitance				2520		pF
Output Capacitance		Coss	V_{DS} =-25V, V_{GS} =0V, f=1.0MHz		135		pF
Reverse Transfer Capacitance		C_{RSS}			105		pF
SWITCHING PARAMETERS							
Total Gate Charge		Q_{G}	\(- 90\\ \\ - 40\\ \ - 22A		41		nC
Gate-Source Charge		Q_GS	V _{DS} =-80V, V _{GS} =-10V, I _D =-23A (Note 1, 2)		11.5		nC
Gate-Drain Charge		Q_GD	(Note 1, 2)		11		nC
Turn-ON Delay Time		t _{D(ON)}			12		ns
Turn-ON Rise Time		t_R	V _{DD} =-50V, V _{GS} =-10V,		18		ns
Turn-OFF Delay Time		t _{D(OFF)}	I_D =-23A, R_G =3 Ω (Note 1, 2)		33		ns
Turn-OFF Fall Time		t _F			20		ns
SOURCE- DRAIN DIODE RATI	NGS AND (CHARACTERI	STICS				
Maximum Body-Diode Continuous Current		Is				-23	Α
Maximum Body-Diode Pulsed Current		I _{SM}				-64	Α
Drain-Source Diode Forward Voltage		V_{SD}	I _S =-23A, V _{GS} =0V			-1.4	V
Body Diode Reverse Recovery Time		t _{rr}	I _F =-23A,		51		ns
Body Diode Reverse Recovery Charge		Q_{rr}	dI/dt=100A/µs (Note 4)		90		nC

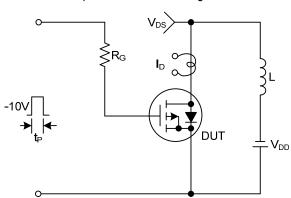
Notes: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%.

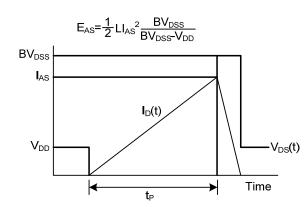

2. Essentially independent of operating temperature.

■ TEST CIRCUITS AND WAVEFORMS


Gate Charge Test Circuit


Gate Charge Waveforms


Resistive Switching Test Circuit


Resistive Switching Waveforms

Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.