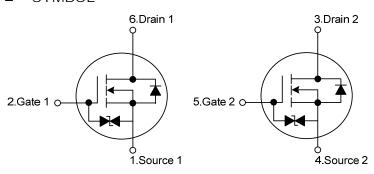


UNISONIC TECHNOLOGIES CO., LTD

2N7002ADW Power MOSFET

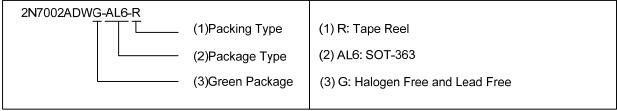
N-CHANNEL SILICON MOSFET GENERAL-PURPOSE SWITCHING DEVICE APPLICATIONS

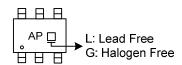

■ DESCRIPTION

The **2N7002ADW** uses UTC advanced technology to provide excellent $R_{\text{DS(ON)}}$, low gate charge and operation with low gate voltages. This device's general purpose is for switching device applications.

■ FEATURES

- * $R_{DS(ON)} \le 5.0 \Omega$ @ $V_{GS}=10V$, $I_D=300mA$ $R_{DS(ON)} \le 8.0 \Omega$ @ $V_{GS}=4.5V$, $I_D=50mA$
- * Fast switching capability
- * Enhanced ESD capability


■ SYMBOL


ORDERING INFORMATION

Ordering Number		Doolsono	Pin Assignment					Doolsing	
Lead Free	Halogen Free	Package	1	2	3	4	5	6	Packing
2N7002ADWL-AL6-R	2N7002ADWG-AL6-R	SOT-363	S1	G1	D2	S2	G2	D1	Tape Reel

Note: Pin Assignment: G: Gate D: Drain S: Source

■ MARKING

<u>www.unisonic.com.tw</u> 1 of 3

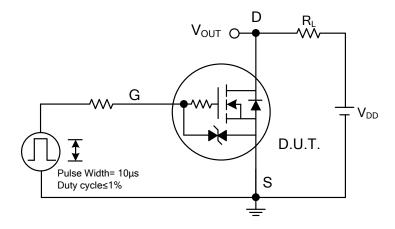
SOT-363

2N7002ADW Power MOSFET

■ ABSOLUTE MAXIMUM RATINGS (T_A=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		$V_{ extsf{DSS}}$	60	V	
Sate-Source Voltage		V_{GSS}	±20	V	
Dunin Cumant	Continuous	- I _D	300	mA	
Drain Current	Pulse(Note 2)		800	mA	
Power Dissipation		Б	200	mW	
Derating above T _A =25°C		P_D	1.6	mW/°C	
Junction Temperature	T _J +150		+150	°C	
Storage Temperature		T _{STG}	-55 ~ + 150	°C	

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.


■ ELECTRICAL CHARACTERISTICS (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
OFF CHARACTERISTICS									
Drain-Source Breakdown Voltage	irce Breakdown Voltage BV _{DSS} V _{GS} =0V, I _D =10μA		60			V			
Drain-Source Leakage Current	I_{DSS}	V _{DS} =60V, V _{GS} =0V			1.0	μΑ			
Gate-Source Leakage Current	I_{GSS}	V_{DS} =0V, V_{GS} =±20V			±10	μΑ			
ON CHARACTERISTICS									
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.0		2.0	V			
Static Drain Source On Besistance (Note)		V _{GS} =10V, I _D =300mA			5.0	Ω			
Static Drain-Source On-Resistance (Note)	R _{DS(ON)}	V_{GS} =4.5V, I_D =50mA			8.0	Ω			
DYNAMIC PARAMETERS									
Input Capacitance	C_{ISS}			15	50	pF			
Output Capacitance	Coss	V _{DS} =25V, V _{GS} =0V, f=1.0MHz		9	25	pF			
Reverse Transfer Capacitance	C_{RSS}			4	5	pF			
SWITCHING PARAMETERS									
Turn-ON Delay Time	$t_{D(ON)}$	I_D =0.2A, V_{DD} =30V, V_{GS} =10V,		2.4	20	ns			
Turn-OFF Delay Time	t _{D(OFF)}	R_L =150 Ω , R_G =10 Ω		5.6	30	ns			
DRAIN-SOURCE DIODE CHARACTERIST	ICS AND MA	XIMUM RATINGS							
Maximum Continuous Drain-Source Diode	Is				300	mA			
Forward Current	ış				300	IIIA			
Maximum Pulsed Drain-Source Diode	I_{SM}				0.8	Α			
Forward Current	ISM				0.0	^			
Drain-Source Diode Forward Voltage	V_{SD}	V _{GS} =0V, I _S =300mA (Note)		0.88	1.5	V			

Notes: 1. Device mounted on FR-4 PCB, 1 inch x 0.85 inch x 0.062 inch. Minimum land pad size.

^{2.} Pulse width ≤ 300 µs, Duty cycle ≤ 1%.

SWITCHING TIME TEST CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.